Introduction

In this project you will learn how to program musical notes in Sonic Pi so that you can turn sheet music into code. You’ll create your own mix of the Tetris theme tune.

Tetris is a popular computer game created in 1984 by Russian coder Alexey Pajitnov. Many versions of Tetris use the music ‘Korobeiniki’, a Russian folk dance.

If you’re using a Raspberry Pi computer then you can hear the music by playing the Tetromino game. You can find it by choosing ‘Games’ from the menu and then ‘Python Games’. Don’t play for too long! You’ve got coding to do.

The shapes of the Tetris pieces are called tetrominoes - the 2D shapes that can be made with 4 squares.
Step 1: Code the Beginning
Now let’s code the first part of the tune in Sonic Pi.

✔️ Activity Checklist

☐ First let’s choose a speed and a synth for the music. The normal speed is 60 beats per minute (bpm) but that’s not fast enough for this piece.

Choose an empty Buffer in Sonic Pi and add this code:

```
use_bpm 120
use_synth :dpulse
```

☐ Here’s the first bar of Korobeiniki:

![Musical notation image]

It shows the name of the note below in red and the length of the note above in green.

Musical notes have letter names from A-G. To get more notes you repeat the letters to get more octaves (ranges of higher or lower notes.) Each octave starts from C.

In Sonic Pi the default is octave 4, b3 means b from the octave below.

Sonic Pi allows you to use letter names instead of numbers. This is useful when you are working with musical notation.

Code the first 3 notes of Korobeiniki in Sonic Pi:
use_bpm 120
use_synth :dpulse

play :e
sleep 1
play :b3
sleep 0.5
play :c
sleep 0.5

That works but it takes quite a lot of typing. There’s a shorter way to program longer tunes: `play_pattern`.

`play_pattern` allows you to program multiple notes in one line.

Replace your code to use `play_pattern` to play the first bar:

```
use_bpm 120
use_synth :dpulse

play_pattern [:e, :b3, :c, :d, :c, :b3]
```

You might have noticed that the notes aren’t actually all the same length. That’s okay, if you change `play_pattern` to `play_pattern_timed` then you can say how long each note lasts.

The numbers in green show many beats each note lasts.
Is the tune starting to sound familiar?

(If you read music, this piece is in 4/4 time and a crotchet lasts one beat, a quaver lasts half a beat and a minim lasts two beats.)

`play_pattern_timed` takes a list of notes and then a list of times.

Change your `play_pattern` code to look like this:

```
play_pattern_timed [:e, :b3, :c, :d, :c, :b3], [1, 0.5, 0.5, 1, 0.5, 0.5]
```

If you don’t give enough times then Sonic Pi will repeat them. This bar repeats the timing `1, 0.5, 0.5` (crotchet, quaver, quaver) so you can change your code to:

```
play_pattern_timed [:e, :b3, :c, :d, :c, :b3], [1, 0.5, 0.5]
```

Add the next bar of music, the timing is the same for this bar.

```
play_pattern_timed [:a3, :a3, :c, :e, :d, :c], [1, 0.5, 0.5]
```

Is the tune starting to sound familiar?
Challenge: Finish the tune

Here’s the music for the next two bars.

Can you use `play_pattern_timed` to program it?

Save your project

Step 2: Faster!

Russian folk songs often get faster and faster. The Tetris theme tune does this too as you get to higher levels in the game.

Let’s make your tune go faster and faster.

⚠️ Activity Checklist

☐ Your code should now look like this:

```python
use_bpm 120
use_synth :dpulse

play_pattern_timed [:e, :b3, :c, :d, :c, :b3], [1, 0.5, 0.5]
play_pattern_timed [:a3, :a3, :c, :e, :d, :c], [1, 0.5, 0.5]
play_pattern_timed [:b3, :c, :d, :e], [1.5, 0.5, 1, 1]
play_pattern_timed [:c, :a3, :a3], [1, 1, 2]
```

☐ Let’s put the music into a loop first so that it plays multiple times:
We can use the variable `current_bpm` to find out what the bpm is currently set to.

Add a line to increase the bpm every time you repeat the loop:

```ruby
3.times do
  play_pattern_timed [':e', ':b3', ':c', ':d', ':c', ':b3], [1, 0.5, 0.5]
  play_pattern_timed [':a3', ':a3', ':c', ':e', ':d', ':c], [1, 0.5, 0.5]
  play_pattern_timed [':b3', ':c', ':d', ':e], [1.5, 0.5, 1, 1]
  play_pattern_timed [':c', ':a3', ':a3], [1, 1, 2]
  use_bpm current_bpm + 40
end
```

Try increasing the number of repeats to go faster and faster!

Save your project

Challenge: Mix the tune

Try changing the way the tune sounds by using a different synth.

You can see a list of the synths available to you by typing `use_synth [space]` and choosing from the list that appears.
Challenge: More of the tune

Can you program the next part of the tune:

Sonic Pi uses ‘r’ in lower case for a rest (a pause) and you can use it just like a note.

Challenge: More music

Can you use what you’ve learned to program more music? You can search for sheet music online. Some music gives the letter names for notes which makes it easier.
Save your project